
Contents
MyUI ..

Overview................................

Installation

Logging..

Message architecture

Logging a message

Setting a logger

Log levels

Log handlers

Date formatting and parsing

Auto suggest component................................

Examples

CSS customization

Field validation

Validators

Examples

Validation flow

Error messages

Programatic validation

Complex examples

Cloud (lightbox)................................

Day selector component................................

Overview

Integration

Example

CSS Customization

Effects ..

Frames ..

Gestures

...Error! Bookmark not defined.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Error! Bookmark not defined.1

.. 2

... 2

.. 3

... 3

.. 4

.. 4

... 4

.................................... 4

... 5

.. 7

... 7

... 8

..................................... 8

... 8

....................................... 10

.. 10

.. 11

.. 11

... 12

.................................. 12

... 14

.. 14

...................................... 14

... 15

.. 15

... 16

.. 18

.. 20

Pop-ups ... 21

Progress bar / slider ... 21

Slide show ... 23

Configuration parameters ... 23

Slideshow links... 23

Slideshow source ... 24

Programatic usage ... 24

Example ... 25

Table-tree .. 26

URL parameters... 27

Example ... 28

Contact .. 29

Overview

MyUI is a JavaScript framework that provides a set of components to improve the web user experience. It
was developed to be very easy to use and understand. Actually for most of the components you don’t
even need to have JavaScript knowledge, as they actually modify the behavior of normal HTML elements
in a transparent way. Usually this is achieved by marking these elements with CSS classes or custom
attributes.

At the base of MyUI is a core JavaScript cross-browser framework. But this is not done by adding an
extra layer on top of the current one, but instead porting the W3C standard methods (like
addEventListener or removeEventListener) and properties (like style.opacity) to the non-supporting
browsers. This was the preferred approach so that the learning curve to be reduced to a minimum level.
Not all the standards are ported to all the non-supporting browsers, but the future intent is to.

What we mean by browsers? Usually I refer to Firefox >= 2, IE >= 6 and Safari >= 3. Also Google
Chrome is in the scope, but not focused on. These are practically all the browsers used on the Internet
space, all others having a market share smaller than 1%. We better focus our efforts in adding new
capabilities, than supporting almost unused browsers.

One of the main cares is also directed into the documentation, which should be as short as possible,
gradual, easy to understand and with enough commented examples. MyUI has a lot of features, but
please use only the ones in this documentation, not the ones learned by inspecting the code. Although
this is not forbidden in any way, the undocumented features are always subject to change. From this
document you should read the Overview, Installation and then you can jump to a specific chapter,
depending on which component you want to use.

Installation

First of all you have to download MyUI from the official site: my-ui.sf.net. Then you must copy the myui
directory from the distribution under your site, let’s say under myui directory.

In order to enable MyUI for your web page, all you need is to reference the main JavaScript file. Below is
the minimal code needed to add all the MyUI features to your webpage:

<script src="myui/myui.js" defer=”false”></script>

It is HIGHLY recommended to add this in the HEAD tag. It is also highly recommended (and even
mandatory in IE8) to have a DOCTYPE for your document. My personal preference is XHTML.
This will automatically include all the necessary scripts and style sheets, but they need to be located in
the same directory as the myui.js file, in this case myui.
What about if you need only one functionality from MyUI? Why loading all the scripts and stylesheets? To
improve performance you can specify which modules should be loaded. This is done using the modules
parameter in the URL for the myui.js file, which represents a comma-separated list of the needed
modules.

<script src="myui/myui.js?modules=popup, slideshow, validation”
defer=”false”></script>

This will load all the necessary files for the popup and slideshow modules, along with all the
dependencies.
The recognized modules are:

 autossugest
 cloud
 date
 daySelector
 effects
 frames
 log4js
 popup
 progressbar
 slideshow
 tabletree
 validation

Logging

Logging is a very important part of an application, including web ones.
MyUI offers a logging framework very similar to the Java one: java.util.logging. This framework is however
more lightweight.

Message architecture

Logging is used as a special communication system. Every message has a level associated. The
standard levels are:

 FATAL, accessed with Level.FATAL

 ERROR, accessed with Level.ERROR

 WARN or WARNING, accessed with Level.WARN or Level.WARNING

 INFO, accessed with Level.INFO

 DEBUG, accessed with Level.DEBUG

Logging a message

This part is actually very simple. You will use the method log from Logger. But first you have to obtain a
logger using the method getLogger and a logger name. The logger name is hierarchical and the
separator is dot(.), like the Java packages.

Logger.getLogger("com.x.y").log(Level.INFO, "Just testing the
logging");

Hierarchically, the logger com.x is the parent of com.x.a and com.x.b. There is also a root logger,
ancestor of all loggers, obtained by passing no parameter to the getLogger method:

Logger.getLogger().log(Level.INFO, "I'm logging on the root");

There are also the convenience methods debug, info, warn, error, fatal to help you log messages
with a specific level.

Logger.getLogger("com.x.y").info("Just testing the logging");

is equivalent with the previous statement.

Setting a logger

Every logger has an associated level. If the messages have the level lower than the one of the logger,
they are logged, otherwise dropped. You can access the level of a logger using the getter/setter methods:
getLevel/setLevel. For actually displaying the message, the logger is using log handlers, that can

be added or removed to a logger using addHandler and removeHandler.

Log levels

Every log level has a name and a value associated with it. The default levels are: DEBUG(500),
INFO(400), WARN(300), ERROR(200), FATAL(100). You can access them using Level.DEBUG,

Level.INFO, Level.WARN, Level.ERROR and Level.FATAL.
You can also create your own custom levels:

var myLevel = new Level("BLAH", 450);
Logger.getLogger("com.x").setLevel(Level.DEBUG);
Logger.getLogger("com.x").log(myLevel, "Blah blah");

Log handlers

These are used for publishing log messages. This is in fact an object which has the publish method
associated with it. Every time a message should be logged by a logger, this calls the method publish.
You can easily define your own handler, in this case to display an alert with the message:

function AlertMessageHandler() {
this.publish = function(logger, level, message, time) {

alert("[" + level + "] " + message);
}

}

Logger.getLogger("com.x").addHandler(new AlertMessageHandler());
Logger.getLogger("com.x").debug("Hello");

The above code will display an alert with the message [DEBUG] Hello.
For your convenience the below handlers are already defined:
WindowLogHandler

Logs messages to a window. You can pass a window to the constructor or a default one will be
used.

NoEchoLogHandler
No output.

ElementContentLogHandler
Appends messages to the content of an HTML element. The HTML element or its ID must be
passed as the first argument of the constructor.

ListLogHandler
Appends messages as list items to an UL/OL HTML element. The HTML list element or its ID
must be passed as the first argument of the constructor.

AlertLogHandler
Displays a box for every message.

WindowStatusLogHandler
Logs messages to a window status bar. You can pass a window to the constructor or the current
one will be used.

FileLogHandler
Logs messages to a file. The file path must be passed as the first parameter of the constructor.
As this is using ActiveX, it works only on IE.

Date formatting and parsing

Date formatting and parsing is performed using the DateFormat class. Such an object is created using

var dateFormat = new DateFormat();

or

var dateFormat = new DateFormat(pattern);

where pattern describes the date format pattern. The main two methods are parse(text) which parses
the given text returns a date or undefined if the text isn't in the right format, and format(date) which
formats the given date and returns a string The date pattern syntax in described below:

Element Syntax Format Examples

Year

yyyy 4 digits 1978, 2005

yy 2 digits 78, 05

y 2 or 4 digits

Month
MMM name or abbreviation March, September

MM 2 digits 03, 09, 12

M 1 or 2 digits 3, 9, 12

NNN abbreviation March, September

Day of Month
dd 2 digits 05, 13, 27

d 1 or 2 digits 5, 13, 27

Day of Week

EEE name Monday, Saturday

EE abbreviation Mon, Sat

E first letter M, S

Hour (1-12)
hh 2 digits 01, 05, 12

h 1 or 2 digits 1, 5, 12

Hour (0-23)
HH 2 digits 00, 04, 23

H 1 or 2 digits 0, 4, 23

Hour (0-11)
KK 2 digits 00, 04, 11

K 1 or 2 digits 0, 4, 11

Hour (1-24)
kk 2 digits 01, 05, 24

k 1 or 2 digits 1, 5, 24

Minute
mm 2 digits 03, 23, 57

m 1 or 2 digits 3, 23, 57

Second
ss 2 digits 07, 09, 34

s 1 or 2 digits 7, 9, 34

AM/PM
A uppercase AM, PM

a lowercase am, pm

As you saw, in the formatting and parsing, it appears some month and weekday names and
abbreviations. The value of these can be customized using the DateFormat properties. The properties
are simple arrays with the corresponding number of elements (month names will be an array of 12
elements). This is useful especially for localization. E.g. the below code will create a DateFormat for
formatting and parsing in Romanian:

this.monthNames = new Array("Ianuarie", "Februarie", "Martie",
"Aprilie", "Mai", "Iunie", Iulie", "August", "Septembrie",
"Octombrie", "Noiembrie", "Decembrie");

this.monthShortNames = new Array("Ian", "Feb", "Mar", "Apr",
"Mai", "Iun", Iul", "Aug", "Sep", "Oct", "Nov", "Dec");

this.dayOfWeekNames = new Array("Luni", "Marti", "Miercuri",
"Joi", "Vineri", "Simbata", "Duminica");

this.dayOfWeekShortNames = new Array("Luni", "Marti",
"Miercuri", "Joi", "Vineri", "Simbata", "Duminica");;

this.dayOfWeekSymbols = new Array("L", "M", "M", "J", "V", "S",
"D");

For all of you, example lovers check the below table:

Pattern Example

yyyy.MM.dd HH:mm:ss z 2004.09.05 12:07:35

EE, MM d Wed, Jul 4

h:mm A 12:08 PM

Auto suggest component

MyUI provides a very flexible and easy to use auto complete (suggest) component.
What is an auto suggest component? A free text input field associated with a drop down menu from
where the user can choose possible options to fill in the input field. Usually the options are influenced and
changing depending on what the user was already typed in.
How do you implement an auto suggest component? An auto suggest component is actually an INPUT
tag augmented with a few special attributes. The attribute that actually transforms an INPUT tag into an
auto suggest component is autoSuggest. The autoSuggest attribute can have the following values:
list:[comma separated list of strings]

The comma separated list of strings contains the options for the auto suggest component. The
drop down menu is populated with the ones that starts with what the user entered in the field.

javascript:[custom code]
This value enables full customization of the options that appears in the drop down menu. The
custom code is a JavaScript code which is executed when the user input is changed to obtain
the new options in the drop down menu. The returned value from this code must be an array
containing different objects, usually strings. The displayed value in the menu is the string or the
displayValue attribute, if defined.

url:[url]
This will retrieve (using GET method) the options from the given URL. The returned content from
the URL must be a list of matching options, each on a separate line. The value of the field is
passed as a parameter with the name value.

The drop down menu for the auto suggest component is not shown immediately after the user is typing in
the field, but after a latency time. This amount of time can be controlled using the
autoSuggestLatency attribute, which represents the number of milliseconds after which the drop down
menu is shown (the value must be an integer). The default value for this is 500 milliseconds.
A minimum number of characters entered in the field after which the suggestions are displayed can be
also customized through the minLengthForSuggestion attribute. If the attribute is not specified a
default value of 2 is used.
The suggestions drop down menu can display only a limited amount of suggestions. This can be
customized using maxDisplayedSuggestions attribute. If the attribute is not specified then a default
value of 10 is used. If the suggestions exceeds this, three dots (...) are shown at the end of the
suggestions list.

Examples

And now just to make things a little bit more clear a few examples:

<input id="test1" type="text" autosuggest="list:abc,abd,acd,xy"
autoSuggestLatency="100"/>

The possible auto suggest options are abc,abd,acd,xy. So if the user will enter ab, the options

displayed in the drop down menu will be abc and abd.

<input id="test2" type="text" autosuggest="javascript: return new
Array('Always','the same');"/>

No matter what user will enter in the text field the options displayed in the drop down menu will be
Always and the same.

<input id="test3" type="text" autosuggest="javascript: return new
Array(this.value + 's', this.value + 'ing');"/>

The options displayed in the drop down menu will be the entered value suffixed with s and ing. If the
user will enter rat the component will suggest rats and rating.

CSS customization

The layout for the drop down menu can be easily customized using the following CSS classes:

.autosuggest.menu.popup
the entire drop down menu with the autosuggest options

.autosuggest.list
the list containing the auto suggest options

.autosuggest.suggestion
an auto suggest option

.autosuggest.suggestion.selected
the currently selected auto suggest options

So if I want a blue background autosuggest menu with yellow option and the one selected in white and
red background I will have a CSS like the one below:

.autosuggest.list {
background-color: blue;

}

.autosuggest.suggestion {
color: yellow;

}

.autosuggest.suggestion.selected {
background-color: red;
color:white;

}

Field validation

MyUI offers some features so you can validate the value of the fields in a form. All the validations are
customized from the fields or form attributes. JavaScript coding is necessary only for custom validation or
custom error reporting.

Validators

MyUI features a set of predefined validations. To enable a validation for a field you have to define an
attribute with the same name.

isNotBlank
If the value is true then the field value cannot be blank. A string of spaces is considered a blank

value. If you want to test for the length of the value you better use minLength or maxLength. If
the value is false, then a blank value is always validated, ignoring the other validators. If the
value is not specified, then the other validators are executed.

minLength

If the value is positive then the field value must be at least minLength long. A negative value of
minLength will be ignored.

maxLength

If the value is positive then the field value must be at most maxLength long. A negative value of
maxLength will be ignored. Please note that you will not be able to enter more characters in the
field.

isFloat
If the attribute value is true or yes then the field value must be an real number. This field uses

the radix attribute for parsing the value in the given radix. If radix attribute is not specified a
default value of 10 is considered.

isInteger

If the attribute value is true or yes then the field value must be an integer number. If this
attribute is specified, the isFloat attribute is ignored. This field uses the radix attribute for
parsing the value in the given radix. If radix attribute is not specified a default value of 10 is
considered.

minValue

The field value must be a number and it must be equal or bigger than minValue. Please note
that you'll be able to enter only digits.
If this attribute is specified it overrides the isInteger and isFloat attributes according to its
type.
This field uses the radix attribute for parsing the value in the given radix. If radix attribute is
not specified a default value of 10 is considered.

maxValue
The field value must be a number and it must be equal or smaller than maxValue. Please note
that you'll be able to enter only digits.
If this attribute is specified it overrides the isInteger and isFloat attributes according to its
type.
This field uses the radix attribute for parsing the value in the given radix. If radix attribute is
not specified a default value of 10 is considered.

pattern
The field value must match the regular expression. The syntax of the regular expression is the
Javascript one.

dateFormat
The field value must be a date specified in the given format. For the date format syntax please
see the Date format section.

minSelected

The field must be a SELECT and it has to have at least minSelected options selected.
maxSelected

The field must be a SELECT and it has to have at most maxSelected options selected.
allowedChars

The user input should contain only characters from the ones specified in this attribute value.
Actually this is not a validation, instead it allows the user to enter only those characters. If the
minValue or maxValue attribute is defined then the allowed characters are only the numerical
ones from this attribute.

forbiddenChars
The user input should not contain characters like the ones specified in this attribute value.
Actually this is not a validation, instead it doesn't allow the user to enter those characters.

Examples

Below you can see some examples:

 A field that accepts numeric values between 0 and 100 (could be a percentage).

<input name="percent" type="text" minValue="0" maxValue="100"/>

 A mandatory non-blank field that can have at most 20 characters in length.

<input name="name" type="text" isNotBlank="true" maxLength="20"/>

 Allows user to enter only radix 16 digits unsigned.

<input name="name" type="text" allowedChars="0123456789abcdef"/>

 It doesn't allow the user to enter spaces and other special characters (this could be useful when
entering an email address.

<input name="name" type="text" forbiddenChars=" ()[]`~|"/>

Validation flow

When does the validation take place? When any of the below events occurs:

 the field value is changed
 the form is submitted

 the validation of a field can be called programmatically: field.validate()

 the validation of all the fields in a form can be called programmatically: form.validate()

The field.validate() and form.validate() methods returns a boolean value indicating if the field
and all the fields in the form, respectively, contain valid values.

What exactly happens during a field validation? Below is the list of actions taken:

1. If the input field has onbeforevalidate attribute defined then the attribute value is executed as
JavaScript code. The scope of this code is the field itself, so you can use inside this to refer to

the field. This code returns if the validation will take place or not, so if this code returns false, no
further actions will be taken. Any other value will be ignored.

2. If the form in which resides the input field has onbeforevalidate attribute defined then the
attribute value is executed as Javascript code. The scope of this code is the form itself, so you
can use inside this to refer to the form. This code returns if the validation will take place or not, if

this code returns false, no further actions will be taken. Any other value will be ignored.
3. The actual validation takes place. Please keep in mind that the result of validation is the boolean

value of true or an [array of] error messages. For how the error messages are generated please
see the next section.

4. If the field attribute errorClass or the form attribute errorClass is defined, then the CSS
class of the field is changed to the given attribute value. The CSS class will change back to the

initial value when the field will contain again a valid value. If both attributes are defined then the
field attribute takes precedence.

5. The error message is displayed according to the displayError attribute value.

alert
An alert message containing the list of error messages is displayed.
div[:divId]

The error messages will be displayed as a list in the DIV with the specified id or if no id is
specified the the default value is the field name followed by ErrorDiv. If the error div has an
errorClass attribute defined then its CSS class name will be set with the attribute value. This
practically allows to hide an error div when the field value is valid and display it in red when
invalid.
javascript:javascript code

Instead of displaying the error message, the given JavaScript code will be executed and it will be
entirely its responsability to display the error message. Inside the JavaScript code you can use
errorMessage to refer to the error message.

What exactly happens during a form validation?

All the fields are validated in the order in which they appear in the form. If a field contains an invalid value,
then the validation of all the other subsequent fields is made according to the value of the
continueOnError attribute of the form. If the value is false or no, then the validation process is
stopped, otherwise continues with all the other fields. If the attribute is not specified a default value of
true is used.

Error messages

As said before the result of the field value validation is either the boolean value of true or an array of error
messages. Further we will explain how these messages are generated. For every predefined validator an
error message is generated if the value doesn't follow the constraint. These messages are predefined or it
can be customized by using:

 field attribute with the name of the constraint followed by ErrMsg; e.g. minCharsErrMsg or
patternErrMsg

 field attribute with the name errMsg

 form attribute with the name of the constraint followed by ErrMsg;

 form attribute with the name errMsg

If more than one of these attributes are defined, it takes precedence the first one in the above order.

Programatic validation

A form or a field can be validated programmatically. The following methods are available for fields and
forms:

field.validate() Invokes the validation for a field.
Returns if the field contains a valid
value according to the validators.

form.validate() Invokes the validation for a form.
Returns true if all the fields contain
a valid value according to the
validators.

form.validateAndSubmit()
Invokes the validation for a form
and if it returns true, the form is
submitted.

Returns true if all the fields contain
a valid value according to the
validators.

Complex examples

And here some much more complex examples:

<input name="dontvalidate" type="checkbox"/> Don't validate
<input name="address" type="text" maxLength="100"
onbeforevalidate="return !this.form.dontvalidate;"/>

A field that is not validated if a checkbox is checked.

<style>
.invalid {

border: solid 1px red;
}

</style>

<input name="max30" type="text" maxValue="30" errorClass="invalid"/>

If the field will not contain a number or if the number is bigger than 30 then around the field will be
displayed a red box of 1 pixel.

<style>
DIV.error {

display: block;
color: red;

}

DIV.invisible {
display: none;

}
</style>

<input name="email" type="text"
pattern="[.0-9a-z]+@[0-9a-z]+.[.0-9a-z]+"
patternErrMsg="Email should contain a valid email address."
displayError="div:emailErrorDiv"/>

<div id="emailErrorDiv" class="invisible" errorClass="error"></div>

A field for validating an email using the pattern regexp constraint. The error message is customized using
the patternErrMsg attribute and it will be displayed inside a div. Please note that attribute
displayError="div:emailErrorDiv" value here has the same effect as displayError="div",
as the div id has the default value. The error div is not displayed if the field value is valid and it is
displayed in red if the value is invalid.

Cloud (lightbox)

MyUI integrates a very easy way to implement a customizable cloud component, also known as lightbox.
A cloud is like a modal window shown over the web page. The user cannot interact with the web page

anymore, but only with the cloud window, until the page is unclouded. There can be only one cloud at a
given time.
Any HTML element can be shown as a cloud using the method document.cloud.

...
<div id=”cloud”>
This is a cloud
</div>
...
cloud me

The method document.cloud(element, center, interactive, scrollable) accepts the
following parameters:
element

the element or element ID that will be the cloud; if none specified, the document is clouded but
with no cloud window

center
if true, the cloud is automatically centered in the window; optional, by default true

interactive

if true, the document can be unclouded clicking outside the cloud or pressing ESCAPE key;
optional, by default true

scrollable
if true, the document can be scrolled while clouded; optional, by default false

To uncloud a web page, simply call document.uncloud().
The example above will become

...
<div id=”cloud”>
This is a cloud.
close
</div>
...
cloud me

The last line is identical to

c
loud me

There is also an easier way to do it, by specifying the cloud value to the rel attribute to A tag

cloud it

This way you can use even an image or another document that will be loaded in an IFRAME

image cloud
web page cloud

The HTML document is hidden by another window, initially invisible, that sits between the HTML
document and the cloud, called the sky. The appearance of the sky can be customized using the sky
CSS class.
The cloud box can be customized using the cloud CSS class.
And now to complete the example we have to add the following lines:

<style>
.sky {

background-color: #999999;
opacity: 0.7;

}

#cloud, .cloud {
background-color: #333333;
border: solid 1px #67CFCF;
display: none;
height: 300px;
width: 400px;

}
</style>

Day selector component

Overview

The day selector component allows you to select a date or a set of dates in a graphical way. The user
interface will display a calendar from which you can select a date. Below you have a screenshot of the
interface and all the components.

1. Main area with cells containing month days
2. Controls area which contains buttons for navigating to the next/previous month/year, buttons for

invoking popups to select a specific day or month
3. Week days header area
4. Week index header area

Integration

The day selector is displayed in two ways: directly embedded on the HTML page or in a popup. If
displayed in a popup, the selector should have an invoker link associated with it.

The embedded day selector is displayed directly on a web page in a DIV. The DIV must have the CSS
class daySelector.

The popup day selector is displayed in a popup (see Popups) and is ensuring some kind of “Browse…”
functionality for input fields with date constraints. Associating the selector with the field is done through a
link (A tag) which invokes the day selector and populates the field accordingly when a date is selected.
The link must have the HREF attribute in the form “#[id of the input field]”. For that field you
have to define a date format validator (see Date format and Field validation). Please be aware that the
onchange event of the text field is fired every time you select a new date.

The div for the day selector supports the following custom attributes:

dateFormat
the date format used to display the dates in the tooltips (see Date format for more information)

date
the default displayed date; the value is given in the format specified by the dateFormat
attribute; if not specified today is displayed

dateSelectionModel
the date selection model used by the day selector component; the value should be specified as
Javascript and the result of evaluating the code will be the selection model itself. If unsure,
please don't specify this value.

The link that invokes a day selector supports the following custom attributes
hideOnSelect

this attribute is available only for links and if it is true or yes the day selector popup is hidden
right after selecting a date. By default a value of true is considered.

Example

A simple day selector in a webpage:

<div class="daySelector"></div>

A day selector with a date (March 5, 2005) selected by default and using dd/MM/yyyy as date format:

<div class="daySelector" dateFormat=”dd/MM/yyyy” date=”5/3/2005”>
</div>

A date field with a Browse like functionality implemented (the date format is the one used in the field and
the date selected is the one specified in the field):

<input id="dateField" name="dateField" dateFormat="dd/MM/yyyy”/>

CSS Customization

The look of the day selector component can be customized using the following CSS classes:

daySelector
the entire day selector container

daySelectorControls
the header containing the controls like buttons for going to the previous month or next year

daySelectorControl
any of the cells header containing the controls like buttons for going to the previous month or
next year

dayCell
any of the cells containing a date

dayOfWeekHeader
any of the cells containing the day of week header

weekHeader

any of the cells containing the week of year header
week1, week2, week3, week4, week5, week6

a header cell containing the week index header or a cell containing the date in the specified day
of week

previousMonth, currentMonth, nextMonth
the date cells in the given month

selected
a selected day cell

mon, tue, wed, thu, fri, sat, sun
a header cell containing the day of week header or a cell containing the date in the specified day
of week

today
the cell containing the today's date

These CSS classes can be combined. So for example, if you want the today's date to be green if
unselected and blue if selected you'll do like this:

.today {
color: green;

}

.today.selected {
color: blue;

}

The customization of the day selector component is limited only by your imagination.

Effects

MyUI comes equipped with a set of ready to use visual effects. An effect is basically a set of actions that
happens at a specific interval. The actions refer to the alteration of visual properties of a specific HTML
element. For example, if you modify the x or y coordinate of an element it will appear like the element is
moving. Or if you increase the transparency of an element, it will appear like the element is fading out.
Using an effect has two steps: creating it and starting it. An already started effect cannot be started again,
until it is finished. An effect can be stopped at any time using the cancel method.
More likely to obtain these kind of effects you will use PropertyEffect which alters the properties of an
HTML element.
To create a property effect use the constructor

PropertyEffect(elem, final, totalTime, speed, acceleration)

where
elem

the element (or its HTML ID) on which the effect will be applied
final

an object containing a list of final values for the element properties. The recognized element
properties are:

 width – the element width, integer value, expressed in pixels

 height – the element height, integer value, expressed in pixels

 x – the element X coordinate relative to the top-left corner, integer value, expressed in
pixels

 y – the element Y coordinate relative to the top-left corner, integer value, expressed in
pixels

 opacity – the element opacity (as opposed to transparency), float value between 1
(completely opaque) and 0 (completely transparent)

 scrollLeft – where the scrolling in an element begins relative to the top-left corner,
integer value, expressed in pixels

 scrollTop – where the scrolling in an element begins relative to the top-left corner,
integer value, expressed in pixels

 clipTop, clipBottom, clipRight, clipLeft – the clipping rectangle of the
element, integer values, expressed in pixels relative to the top-left corner of the element

 marginTop, marginBottom, marginRight, marginLeft – element margins,
integer values, expressed in pixels

Except the integer/float values given for properties, you can also specify values in the
following formats:
 [-][percent]% - increases/decreases the current value with the given percentage
 +[-][amount] – increases/decreases the current value with the given amount

totalTime
how much time the effect should run

speed
the speed of the effect in fps (frames per seconds) Higher values can result in smoother
animation, but requires more performance

acceleration
a value or an array of values on how the changes on the values of the element properties are
distributed over time.

Let’s clarify things a little bit with a few examples:

 The element with the box HTML ID will move to the y-coordinate equal to 500.

new PropertyEffect(document.getElementById("box"), {y: 500})

 The box will fade out almost entirely in 2 seconds. The animation speed is increased to 30 fps to
be much smoother.

new PropertyEffect(document.getElementById("box"), {opacity: 0.1},
2000, 30)

 The box will move accelerated with 500 pixels on the right in 500 milliseconds.

new PropertyEffect(document.getElementById("box”), {x: +500}, 500,
30, 1.1)

 The box will move decelerated with 10% from the current position to the left.

new PropertyEffect(document.getElementById("box”), {x: -10%}, 500,
30, -0.7)

 The box will move 200 pixels from the current position to the left. In the first 600 ms the
acceleration will be 2.1, then in the next second the object will move with no acceleration and in
the last 400 ms the object will move decelerated.

new PropertyEffect(document.getElementById("box”), {y: +200}, 2000,
30, [{acceleration: 2.1, time: 0.3}, {acceleration: 0, time: 50%},
{acceleration: -0.9, time: 0.2}])

More effects can be combined into one effect using SerialEffect (effects will be executed one after

another), ParallelEffect (effects will be executed in parallel) or RandomEffect(one effect is chosen
randomly and executed).
To create such an effect you have to pass to the constructor effects or arrays holding effects objects.

var serialEffect = new SerialEffect(
new PropertyEffect(document.getElementById("box"), {x: "100%",

y:500, opacity: "+-0.6", width: 500, clipLeft: 30}),
new PropertyEffect(document.getElementById("box"), {x: "-50%",

y:300, opacity: "+0.6", width: 400, clipLeft: 10})
)

var parallelEffect = new ParallelEffect(new Array(
new PropertyEffect(document.getElementById("box"), {x: "100%",

y:500, opacity: "+-0.6", width: 500, clipLeft: 30}),
new PropertyEffect(document.getElementById("box"), {x: "-50%",

y:300, opacity: "+0.6", width: 400, clipLeft: 10})
));

Frames

Frames/windows could be created using the constructor new Frame(doc, x, y, width, height),
where the attributes represents the following

doc
the owner document

x
the horizontal axis coordinate

y
the vertical axis coordinate

width
the window width

height
the window height

The created element supports the following methods and properties:

Name Method Parameters

getX() returns the horizontal coordinate

setX(x) sets the horizontal coordinate

getY(y) returns the vertical coordinate

setY(y) sets the vertical coordinate

setPosition(x, y)
sets the window position on horizontal and
vertical axis; if x and y are null, then the frame is
centered on screen

getWidth() returns the window width

setWidth(width) sets the window width

getHeight() returns the window height

setHeight(height) sets the window height

setSize(width, height) sets the window size

scrollToVisible()

scroll the document so that this window could
become visible; if the window is not visible, the
document will be scrolled, but the window will
still not be visible

isIconified() returns if this window is iconified

setIconified(iconified) Sets the iconified state of this window

isVisible() returns if this window is visible

setVisible(visible)
if the argument is true, makes this window
visible (if not already); hides it otherwise

setTitle(elem) sets the title to appear on the window title bar
elem is an HTML element or a
string containing text or HTML
content

setStatus(elem)
sets the status to appear on the window status
bar

elem is an HTML element or a
string containing text or HTML
content

setContent(elem) sets the window content
elem is an HTML element or a
string containing text or HTML
content

addContent(elem) adds the parameter to the window as content
elem is an HTML element or a
string containing text or HTML
content

resizable = true/false get/set if the window can be resized by the user

positionLocked =
true/false

get/set if the window can be moved by the user
or not

true - the window cannot be
moved by the user, false - the
window can be moved by the
user

You can easily add/remove event listeners to every frame using addEventListener/removeEventListener,
as the well known standard methods. The following events are recognized:

 framemove – fired when the position of the frame is changed

 frameresize – fired when the width or height of the frame is changed

 frameiconify – fired when the frame is changed to an iconified status

 framedeiconify – fired when the frame is changed to an deiconified status

 frameshow – fired when the position of the frame is shown

 framehide – fired when the position of the frame is hidden
Frame actions like iconifying use some sort of visual effects. This can be disabled with

Frame.useEffects = false;

and re-enabled with

Frame.useEffects = true;

Gestures

A gesture is a mouse movement executed while holding the left button down. This movement resembles
some kind of shape.
How would you use it? First you will define a set of gestures (you can use
the gesture editor packed with the demos). Then you will add an event
listener to an object. Whenever a gesture is started from that object the
listener will be executed. In the listener handler you have the opportunity to
compare the gesture with your predefined set of gesture. If a match is
found, you can start whatever action, depending on the match.
A gesture has a name (optional) and a shape, encoded as a set of
directions, as in the figure in the right. A gesture must match not only the
shape, but also the direction of the movement.
Taking this into account to create a gesture is fairly easy:

new Gesture(“Up”, “111”);

To add a gesture listener is done like with any other event:

element.addEventListener(“gesture”, function() {
// display the gesture executed by the user
// drawing a gesture works only in Mozilla and Safari
event.gesture.displayInWindow(window);

}, false);

And to match a gesture again a set of predefined ones you need to use the mostLikely method.
Putting all these together, we will have:

var gestures = new Array();
gestures.push(new Gesture("Up","111"));
gestures.push(new Gesture("Right","333"));
gestures.push(new Gesture("Down","555"));
gestures.push(new Gesture("Left","777"));
element.addEventListener("gesture", function(event) {
event.gesture.displayInWindow(window);
var gestureMatch = event.gesture.mostLikely(gestures);
if (gestureMatch == null) {

// no gesture is matched
return;

}
switch(gestureMatch.name) {

case "Up"
// do something on gesture Up
break;

case "Right"
// do something on gesture Right
break;

case "Down"
// do something on gesture Down
break;

case "Left"
// do something on gesture Left

456

307

218

break;
}

}, false);

Pop-ups

Pop-ups are small window that appear usually as a consequence of a contextual right click. Such a popup
can be created using the constructor new Popup(doc), where doc is the document that will contain the
popup.
Pop-up methods
show(x, y) Shows the popup at the given coordinates relative to the top-left corner of the

document.
hide() Hides the popup.
isVisible() Returns true if the popup is currently visible, false otherwise
setContent(elem) Sets the content of the popup. The parameter is either an HTML element or a

string containing HTML code
If you want to setup any popup as the contextual popup of an HTML element, document or window you
can use the method

element.setRightClickPopup(popup)

The pop-ups appearance can be easily customized using the popup CSS class name. E.g. if you want
pop-ups with a gray background, you can use

.popup {
background-color: #555555;

}

Progress bar / slider

To create a progress bar/slider using MyUI is very easy. Just mark an element with the
progressbar/slider CSS class and that's it. The only difference between a progress bar and a slider
is that the slider has an element to mark the current position. The slider can be used as a scrollbar too.
Every progress bar has a percent and a value associated with it. The percent is the actual completed
percentage and the value is the actual (completed) value. The percent is an integer number between 0
and 100. The value is a float between minValue and maxValue, where minValue and maxValue are
the values of the DIV attributes with the same name. If these are missing the default are between 0 and
100. The default value of the progress bar is the integer number enclosed in the DIV, by default 0.
A progress bar can be also modified by user interaction, by adding the editable CSS class to the DIV.
The user can click on the progress bar or drag it and thus will change its value accordingly. This ensures
slider/scroll bar functionality.
As for any MyUI components, the progress bar can be easily customized through CSS classes:
completed

for the portion of the progress bar that is completed. E.g. setting a blue background for the
completed part of a progress bar can be easily done with

.completed {
background-color: blue;

}

For a slider, it would make sense to completely hide this part.

.completed {
display: none;

}

label
for the text displayed over the progress bar, at the center.

face
this is available only for sliders and represents the element to mark the current position.

.face {
background-color: gray;
border: solid 1px lightgrey;

}

By default a progress bar is horizontal, but it can be made vertical if you add the CSS class vertical. If
you customize it using background images, remember that these are not automatically rotated. So you
have to have a different version for the vertical orientation.

.completed {
background: blue url(bluegradient.gif) repeat-x;

}
.vertical .completed {

background: blue url(bluegradient-vertical.gif) repeat-y;
}

The label displayed on the progress bar can be easily customized using the label attribute which can
have one of the following values:

 none – no label is displayed

 value – the completed value of the progress bar is displayed

 percent – the completed percent of the progress bar is displayed

 text:[text] – the given text is displayed, regardless of the completed value of the progress
bar.

 javascript:[expression] – the given expression is evaluated every time the completed
percent is changed and the result is displayed.You can refer to the progress bar inside the
expression using this. The following will display both the completed value and percent

<div class="progressbar" label="javascript: this.getValue() + ' (' +
this.getPercent() + '%)'">30</div>

Scroll pane

A

Slide show

Using MyUI you can take advantage of a full featured slideshow. The easiest way to include such a
slideshow in your web page is by marking a DIV with the slideshow CSS class.

<div class=”slideshow”>
<div>Slide 1</div>
<div>Slide 2</div>

</div>

This will not do you too much good. You have the slideshow, but at this moment it will seem that it is
doing nothing. So next we have to configure it.

Configuration parameters

The slideshow configuration is made through HTML attributes on the slideshow DIV. You also need to
specify a width and height for it. Please find below a list, with the name, possible values and description.

Name Description Possible values
autostart If specified, this should be a numerical

value representing the number of
milliseconds after which the slideshow will
automatically start

by default, the slideshow will not
automatically start

circular If true, if the slideshow reaches the final
slide will restart with the first one.

true/false, by default true

orientation The orientation of the slideshow and how
the slides are aligned

horizontal/vertical, by default
horizontal

slideInterval If this slideshow is automatically running
this the pause interval between slides. This
interval does not include the transition time.

Numeric, by default 3000

source The slideshow source. Please see the next
paragraph.

default is new
ChildrenSlideShowSource(th
is)

transition The transition between slides type. slide/fade/none/back-forth/back-
forth-[angle], by default slide

transitionAcceleration The transition between slides acceleration. Numeric, by default 50
transitionSpeed The transition between slides speed in fps

(frames per seconds)
Numeric, by default 20

transitionTime The transition between slides total time in
milliseconds

Numeric, by default 1000

updateAddress If false, the address bar is not automatically
updated with the slide permalink

true/false, by default true

For transition, transitionAcceleration, transitionSpeed and transitionTime you better
consult the Effects, as this is heavily based on.

Slideshow links

In the document you can have links to different slides in a slideshow or links to move to the previous or
next slide.

These links are special and their reference (HREF attribute) should be one of the following:

 #[slideShowId]#[slideIndex] – move to the slide with the given index(0 for the first slide)
in the slideshow with the given HTML ID

 #[slideShowId]#[slideId] – move to the slide with the given HTML ID in the slideshow with
the given HTML ID

 #[slideShowId]#next - move to the next slide in the slideshow with the given HTML ID

 #[slideShowId]#previous - move to the previous slide in the slideshow with the given HTML
ID

where slideShowId is the HTML ID of the slideshow element, slideId is the HTML ID of the slide
element and slideIndex is the zero-based index of the slide.
Below you can find some examples:

 first slide

<a
href="javascript:document.getElementById('slideshow1').setCurrent(1)
;"> second slide

second slide

first slide

previous slide

next slide

Slideshow source

The slideshow can retrieve its slides from all kind of different sources. A slideshow source is practically a
class that implements two methods: size() which returns the number of slides in the presentation and
get(index) which returns an HTML element representing the slide with the given index.
This is configured using the source attribute of the slideshow element, of which string value is evaluated
as a JavaScript expression.
You can create your own source or use an existing one already provided in the distribution.

 ChildrenSlideShowSource – the slides are the DIV children of the element passed in the
constructor. The constructor also accepts the ID of the parent element instead of the element
itself. Example:

new ChildrenSlideShowSource(document.getElementById(“slideshow”))

 ElementsSlideShowSource – the slides are passed in the constructor as elements or HTML
ID. Example:

new ElementsSlideShowSource(“s1”, document.getElementById(“s2”));

Programatic usage

A slideshow comes equipped with some JavaScript methods for your convenience.
next() – advance to the next slide.

previous() – back to the previous slide.

getCurrent() – returns the current slide index.

setCurrent(index) – go to the slide with the given index. The parameter represents the zero-based
index of the slide.
setCurrentSlide(slideId) – go to the slide with the given HTML ID. The parameter represents the
HTML id of the slide element.
start(after) – will automatically start and advance slides after the specified number of milliseconds.
stop() – will automatically stop the auto slideshow.

Example

Below is a more complex example.

<html>
<head>

<script src="../src/myui.js"></script>
<style>

A {
outline: 0;

}

#slide0 {
background-color: navy;

}
#slide1 {

background-color: lightgreen;
}

#slide2 {
background-color: lightblue;

}
#slide3 {

background-color: forestgreen;
}

#s1 {
width: 500px;
height: 350px;
border: solid 1px #222222;

}

.slideshow {
width: 500px;
height: 350px;
float: left;
background-color: lightyellow;

}

.previousSlide, .nextSlide {
display: block;
float: left;
width: 50px;
height: 100%;

}

.nextSlide {
margin-left: -50px;

}

.previousSlide {
margin-left: -100%;

}
</style>

</head>
<body>

1

2
3

4

<div id="s1">
<div id="sshow1" class="slideshow" transition="slide">

<div id="slide0">1</div>
<div id="slide1">2</div>
<div id="slide2">3</div>
<div id="slide3">4</div>

</div>
«
<a

href="javascript:document.getElementById('sshow1').next()"
class="nextSlide">»

</div>

</body>
</html>

This will create a slideshow with 4 slides. We also attached previous and next buttons over the slides, at
the left and right of the slideshow. These can be tuned up to your imagination, adding images,
transparency, hovering effects. Using the links at the top of the page you can go directly to a specific
slide.

Table-tree

The table-tree component is a combination of table and tree. It is a tree of which items are rows in a table
and the information concerning the tree items is organized into columns. Creating such a component is
very straightforward. Any HTML table can be easily enhanced with the tree functionality, by adding just a
few more attributes.

First of all, the table. For the table you must define the following attributes:

levelIndent
The indentation for each level in the tree in pixels. Every row in the table will appear indented
according to its level multiplied by this value. Mandatory.

iconExpanded
The URL to the image representing the icon that appears in front of an expanded node.

iconCollapsed
The URL to the image representing the icon that appears in front of an collapsed node.

Now that we have the table tree in place, we have to define its hierarchy. Every row must contain a cell
(TD or TH) with just one attribute defined: treeLevel. This is an integer and represents the level in the
tree of the containing row.

As a hierarchy, all the rows that follows a row and have a smaller level are in the same subtree.

Finally, the example. The following HTML code:

<table levelIndent="10" iconExpanded="expanded.gif"
iconCollapsed="collapsed.gif">

<tr> <td treeLevel="0">1</td> <td>MyUI</td> </tr>
<tr> <td treeLevel="1">1.1</td> <td>is</td> </tr>
<tr> <td treeLevel="2">1.1.1</td> <td>the</td> </tr>
<tr> <td treeLevel="2">1.1.2</td> <td>best</td> </tr>
<tr> <td treeLevel="1">1.2</td> <td>web</td> </tr>
<tr> <td treeLevel="2">1.2.1</td> <td>framework</td> </tr>
<tr> <td treeLevel="1">1.3</td> <td>!!!</td> </tr>

</table>

will render as

- 1 MyUI
- 1.1 is

- 1.1.1 the
- 1.1.2 best

- 1.2 web
- 1.2.1 framework

- 1.3 !!!

URL parameters

If you specify the attribute copyValuesFromParameters to a form, then all the fields will be prefilled
with the parameters in the URL. Please keep in mind that these are only the GET parameters, the POST
ones will be ignored.

The field value will be copied from the parameter with the same name as the field name. This will be
applied for text fields, text areas, checkboxes, radio buttons, password fields, hidden fields, drop-down
and multiple select components.

If we want to match the fields with parameters in other way than with the name, we have to specify the
attribute parameterMatchingAttribute on the form. Then every field will be populated with the value
of the parameter of which names is equal to the value of the field's attribute with the name specified by
the form attribute parameterMatchingAttribute.

Example

1. If we have the URL
http://a.site.com/prefill.html?name=User%20Interface&public=yes&color=g

reen&size=medium and the html page prefill.html

<html>
<head>

<script src="myui.js"></script>
</head>
<body>
<form method="get" prefillFromParameters="true">
<table>
<tr><td>Name:</td><td><input name="name" type="text"/></td></tr>
<tr><td>Public:</td><td><input name="public"
type="checkbox"/></td></tr>
<tr><td>Color:</td><td>
<input name="color" type="radio" value="red"/> red

<input name="color" type="radio" value="green"/> green

<input name="color" type="radio" value="blue"/> blue

</td></tr>
<tr><td>Size:</td><td>
<select name="size">
<option value="small">small</option>
<option value="medium">medium</option>
<option value="large">large</option>
</td></tr>
<tr>

<td colspan="2" align="right">
<input type="submit" id="submitButton" name="submitButton"

value="submit"/>
</td>

</tr>
</table>
</form>
</body>
</html>

then the first field will be populated with User Interface value, the checkbox will be checked,
the second radio button will be selected and the medium option will be selected in the dropdown.

2. If we have the URL
http://a.site.com/prefill.html?firstName=John&lastName=Doe and the html page
prefill.html

<html>
<head>

<script src="myui.js"></script>
</head>
<body>
<form method="get" prefillFromParameters="true"
parametersMatchingAttribute="id">
Name:<input name="firstName" id="lastName" type="text"/>
</form>

</body>
</html>

then the field will be filled in with the Doe value.

Contact

If you have any questions or suggestions about MyUI please feel free to use the dedicated forum at
http://p.sf.net/my-ui/forum.

